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Model Equations

We formulate a deterministic Susceptible, Infected, Removed (SIR) model of B. pertussis transmission [1,
2, 3]. Briefly, individuals are born susceptible to B. pertussis infection at rate µ, where they are vaccinated
with whole-cell (wP) or acellular (aP) B. pertussis vaccine at rates wP and aP , respectively. We assume
those vaccinated with wP are completely immune to infection, while those vaccinated with aP move into
a vaccinated class where they are susceptible to asymptomatic infection. Susceptible individuals become
infected with B. pertussis at rate β and become symptomatic with probability σ. Individuals recover
from symptomatic and asymptomatic infection at rates γs and γa, respectively. Individuals die at rate ν,
which we set equal to µ to keep population size constant. Individuals can wane from protective immunity
at rate ω. The equations governing transmission dynamics are:

S′(t) = µ · (1− wP − aP )− β[Is(t) + Ia(t)]S(t) + ωR(t)− νS(t) (1)

I ′s(t) = βσ[Is(t) + Ia(t)]S(t)− γsIs(t)− νIs(t) (2)

I ′a(t) = β(1− σ)[Is(t) + Ia(t)]S(t) + β[Is(t) + Ia(t)]V (t)− γaIa(t)− νIa(t) (3)

V ′(t) = µ · aP − β[Is(t) + Ia(t)]V (t)− νV (t) (4)

R′(t) = µ · wP + γsIs(t) + γaIa(t)− ωR(t)− νR(t) (5)

We begin simulations with neither wP or aP vaccination. After some time period, twP , we initiate wP
vaccination, and after that at taP , we stop wP vaccination and begin aP vaccination, similar to replacement
of wP by aP vaccines in the mid-1990s [4]. Although this model does not include waning immunity, a
process thought to be important for B. pertussis, we discuss in the main text how this is a conservative
modeling choice with respect to our conclusions.

Stochastic Model

We developed a stochastic version of the model to examine the effects of population size on stochastic
fade-outs of B. pertussis epidemics. We used a Gillespie stochastic simulation algorithm [5] with the
Binomial Tau leap approximation (BTL) [6] with rates and state transition probabilities chosen to match
the deterministic model above. BTL was chosen here for efficiency, computational speed and to avoid
negative population sizes [6, 7]. Parameters explored were chosen to be identical to those in the main text
with an additional death rate of recovered individuals (1/15) to stabilize population sizes. Population sizes
were drawn from a power law distribution with scaling exponent -1.2, with a minimum of 102 individuals
and a maximum of 107 individuals.

Steady-state Equilibria

Calculation of the stready-state equilibria of this model is done by equating Equations (1)–(5) to 0 and
solving for the state variables, S, Is, Ia, V, and R. There are two equilibria. The disease-free equilibrium
is given by:

S∗ =
µ(1− aP − wP )

ν
(6)

I∗s = I∗a = 0 (7)

V ∗ =
aPµ

ν
(8)

R∗ =
µwP

ν
. (9)
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The other equilibrium has infectious and vaccination classes given by

I∗s = −
σρ
[
βµ
[
σρ(γa − γs) + ν(wP − 1) + γs(wP − 1)

]
+ ν(γa + ν)(γs + ν)

]
β(γs + ν)

[
σρ(γa − γs) + ν(wP − 1) + γs(wP − 1)

] (10)

I∗a =
(σρ− wP + 1)

[
βµ
[
σρ(γa − γs) + ν(wP − 1) + γs(wP − 1)

]
+ ν(γa + ν)(γs + ν)

]
β(γa + ν)

[
σρ(γa − γs) + ν(wP − 1) + γs(wP − 1)

] (11)

V ∗ = − aP (γa + ν)(γs + ν)

β
[
σρ(γa − γs) + ν(wP − 1) + γs(wP − 1)

] (12)

where ρ = (aP + wP − 1) for clarity.

Calculating R0

To calculate the basic reproduction number, R0, we follow the formulation as laid out in Diekmann et
al. [8]. R0 is the spectral radius of the Next Generation Matrix, K, (ie: R0 = ρ(K) = sup{| λ |: λ ∈
σ(K)} where σ(·) denotes the spectrum of matrix K). We will decompose K into two matrices: T, the
transmission matrix, where Tij is the rate at which infected individuals in state j infect individuals in
state i; and Σ, the transition matrix, where Σij is the rate an individual in state j transitions to state i.
Diekmann et al. show that

K = −ETTΣ−1E (13)

Where T−1 is the inverse of matrix T and E is a matrix of unit column vectors eij for all i such that the
ith row of T is not identically zero.

We start by linearizing the system about the disease free equilibrium. Assuming ν = µ, Equations (6)-
(9) become:

S∗ = (1− aP − wP ) (14)

I∗s = I∗a = 0 (15)

V ∗ = aP (16)

R∗ = wP. (17)

Using the model equations given above, we formulate the infection subsystem as:

I ′s = βσ[Is + Ia]S
∗ − γsIs − νIs

= βσ[Is + Ia](1− aP − wP )− γsIs − νIs (18)

I ′a = β(1− σ)[Is + Ia]S
∗ + β[Is + Ia]V

∗ − γaIa − νIa
= β(1− σ)[Is + Ia](1− aP − wP ) + β[Is + Ia]aP − γaIa − νIa (19)

where the (t)s have been dropped for clarity.
The rate of transmission into symptomatic and asymptomatic classes are given by

∂

∂Ia
(I ′s) = βσ(1− aP − wP ) (20)

∂

∂Is
(I ′a) = β(1− σ)(1− aP − wP ) (21)

∂

∂V
(I ′a) = βaP (22)

We find the transmission matrix to be:

T =

 βσ(1− aP − wP ) 0 0
0 β(1− σ)(1− aP − wP ) 0
0 βaP 0

 . (23)
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Next we calculate the transition matrix, Σ, where the (i, j) entry is the rate at which an individual in
state j transitions to state i (excluding infection transitions). Since there are no transitions between infec-
tious states in our infection subsystem, the transition matrix is a diagonal matrix with the entries equal
to the demographic and recovery rates of symptomatics, asymptomatics, and aP vaccinated individuals:

Σ =

 −(ν + γs) 0 0
0 −(ν + γa) 0
0 0 µaP − ν

 . (24)

This makes finding the inverse of Σ trivial, it is simply the reciprocal of each non-zero entry. Now, since
none of the rows of T are identically zero, E is simply the 4-by-4 identity matrix and our next generation
matrix (NGM), is K = −ETTΣ−1E = −TΣ−1 =

−βσ(1−aP−wP )
−(ν+γs) 0 0

0 −β(1−σ)(1−aP−wP )
−(ν+γa) 0

0 − aPβ
−(ν+γa) 0

 . (25)

The eigenvalues of K are{
0,

β(σ − 1)(aP + wP − 2)

γa + ν
, −βσ(aP + wP − 2)

γs + ν

}
. (26)

R0 is defined as the dominant eigenvalue of K, which is determined by the values of the parameters.
The second eigenvalue corresponds to the R0 of the asymptomatic strain, and the third to the R0 of the
symptomatic strain. Thus, R0 for the entire system is given by the sum:

R0 =
β(σ − 1)(aP + wP − 1)

γa + ν
− βσ(aP + wP − 1)

γs + ν
(27)

=
(1− aP − wP )β(γs + ν + γaσ − γsσ)

(γa + ν)(γs + ν)
(28)

Different Forces of Infection

Asymptomatic infection may be less transmissible than symptomatic infection due to less shedding
of bacteria through coughing. On the other hand, symptomatic individuals may have a smaller force of
infection due to self isolation. Thus, in the main text we assume equal forces of infection. To assess
sensitivity of our results to this assumption, we can formulate the model with unequal forces of infection,
βs and βa, for symptomatic and asymptotic infections, respectively. We modify the infection term

β(1− σ)[Is(t) + Ia(t)]S(t)→ (1− σ)[βsIs(t) + βaIa(t)]S(t) (29)

The steady-state equilibrium becomes

I∗s = −σ(aP+wP−2)(βaµ(γs+ν)(σ(aP+wP−2)−wP+2)−(γa+ν)(βsµσ(aP+wP−2)+ν2+γsν))
(γs+ν)(βa(γs+ν)(σ(aP+wP−2)−wP+2)−βsσ(aP+wP−2)(γa+ν)) (30)

I∗a =
(σ(aP+wP−2)−wP+2)(βaµ(γs+ν)(σ(aP+wP−2)−wP+2)−(γa+ν)(βsµσ(aP+wP−2)+ν2+γsν))

(γa+ν)(βa(γs+ν)(σ(aP+wP−2)−wP+2)−βsσ(aP+wP−2)(γa+ν)) (31)

V ∗ = aP (γa+ν)(γs+ν)
βa(γs+ν)(σ(aP+wP−2)−wP+2)−βsσ(aP+wP−2)(γa+ν) . (32)

And R0,

R0 = (1− aP − wP )

(
βa(σ − 1)

(γa + ν)
− βsσ

(γs + ν)

)
. (33)

For a less transmissible asymptomatic infection, none of the results change qualitatively (Figure S1).
As βa decreases relative to βs, R0 decreases modestly (Figure S2).
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Sensitivity of Dynamics to Rate of Asymptomatic Infection (σ)

Figure S3 shows the lack of sensitivity of the dynamics to changes in asymptomatic infection rate (σ).
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Figure S1: The effects of ineffective B.
pertussis vaccination under lower asymp-
tomatic transmission Figure is analogous to
the figures in the main text with βa = βs/10.
Other parameters: µ = ν = 1/75 years−1;
γs = γa = 14 days−1; σ = 0.25; wP = aP = 0;
R0 = 18.
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Figure S2: R0 changes as asymptomatic
infections become less transmissible Fig-
ure shows R0 decreasing as asymptomatic in-
fections become less transmissible relative to
symptomatic infections (βs/βa). Parameters:
µ = ν = 1/75 years−1; γs = γa = 14 days−1;
σ = 0.25; wP = aP = 0.
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Figure S3: The effects of ineffective B. pertussis vaccination under higher asymptomatic
infection rate Figure is analogous to figures 1, 2, and 5 in the main text with σ = 0.75. Other
parameters: µ = ν = 1/75 years−1; γs = γa = 14 days−1; wP = aP = 0; R0 = 18.

6


